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Abstract: Optical coherence tomography (OCT) is a non-invasive depth resolved optical
imaging modality, that enables high resolution, cross-sectional imaging in biological tissues and
materials at clinically relevant depths. Though OCT offers high resolution imaging, the best
ultra-high-resolution OCT systems are limited to imaging structural changes with a resolution
of one micron on a single B-scan within very limited depth. Nanosensitive OCT (nsOCT) is
a recently developed technique that is capable of providing enhanced sensitivity of OCT to
structural changes. Improving the sensitivity of OCT to detect structural changes at the nanoscale
level, to a depth typical for conventional OCT, could potentially improve the diagnostic capability
of OCT in medical applications. In this paper, we demonstrate the capability of nsOCT to detect
structural changes deep in the rat cornea following superficial corneal injury.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

OCT is a low coherence interferometric imaging technique that maps axial reflections of
near-infrared (NIR) light from tissue to form cross sectional images of morphological features
at the micrometer scale [1,2]. Since its introduction early 1990’s, OCT has been clinically
demonstrated in a diverse set of medical and surgical applications, including ophthalmology,
gastroenterology, dermatology, cardiology, and oncology, among others [1]. Being a non-invasive
imaging modality, OCT can be used to produce cross sectional images of tissues in situ and in
real time, without the need to excise and process the specimens, as in conventional biopsy and
histopathology procedures. The penetration depth of OCT is limited by the optical scattering and
is up to 2-3 mm in biological tissues. Although this depth is shallow compared with other clinical
imaging techniques, the image resolution of OCT both lateral and axial, is 10-100 times finer
than conventional 3D imaging techniques such as the ultrasound, magnetic resonance imaging
and computed tomography [2]. In a conventional OCT system, the lateral resolution is inversely
proportional to the numerical aperture of the objective lens and the axial resolution is limited
by the bandwidth of light sources used for imaging [1]. Typical values for the axial resolution
are 6-15 ym in air. Over the years, numerous techniques have been proposed and implemented
to improve the axial resolution of conventional OCT systems. Most of these techniques used
Ti:sapphire lasers or light sources based on supercontinuum generation from photonic crystal
fibres for imaging [3—5]. However, the best ultra-high resolution OCT systems are limited to
detecting structural changes with a resolution of one micron on a single B-scan within very
limited depth [3]. Currently, the axial resolution for imaging in scattering tissues is generally
limited to a maximum of (imaging depth)/200 [6]. Though several super-resolution and nanoscale
detection techniques were proposed recently, imaging structures over four orders of magnitude in
size, using the same imaging technique, remains a challenge [7].

OCT is used for both structural and functional imaging of in vivo biological tissues. The func-
tional imaging applications include angiographic OCT, photothermal OCT, spectroscopic OCT
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and elastography. However, most of these functional imaging techniques are unable to determine
submicron changes within the tissue and are capable of only determining the structural/functional
aspects within the optical resolution of the OCT system, excluding spectroscopic OCT and phase
sensitive methods. Recently, a few methods have been proposed in combination with OCT to
detect nanoscale structural changes. One of them is based on phase sensitive OCT (psOCT)
which uses the Fourier analysis of phase differences of acquired interference spectra (A- scans)
at particular depth positions [8]. Nanoscale detection with phase sensitive techniques has been
used for different applications, including optical coherence elastography (OCE) to detect the
biomechanical properties [9], to determine the submicron movement of the basilar membrane
within the organ of Corti and neural action potential in a squid and others [10,11]. However,
phase sensitive OCT requires two or more frames (M-scan) for realization and is inherently
prone to noises (bulk motion, vibrations, etc.). Another technique called inverse spectroscopic
OCT (ISOCT) has been developed wherein wavelength dependent backscattering coeflicient and
scattering coefficient is determined by fitting an autocorrelation function to the detected A-scan
OCT signal and from the fit model based on Mie scattering theory, the mass density distribution
in a biological sample is quantified [12]. The mass density distribution obtained using ISOCT
was used to study extra cellular matrix remodelling in in vitro cancer models [13] and to study
field carcinogenesis [14].

Recently, nano-sensitive OCT has been developed by Alexandrov et al [15-17]. It is based
on the spectral encoding of spatial frequency approach [18-22] which demonstrated nanoscale
sensitivity to structural changes and super-resolution imaging. The nsOCT has been used to
detect both structural and dynamic changes in ex vivo and in vivo biological tissues [15,16,23].
The nsOCT permits access to the local spatial frequency content of the object directly based
on the general scattering theory [24]. Hence, nsOCT provides quantitative information about
structural sizes within the accessible range of spatial frequencies. The length scale in nsOCT
depends on the spectral bandwidth of the light source and is in the sub-micron scale even for
1300 nm central wavelength source (from ~620 nm to ~680 nm optical length scale in the present
paper). However, sensitivity to structural alterations in time and in space is at nanoscale, as it was
shown in Refs [15,16,23]. Also, spatial frequency domain correlation mapping optical coherence
tomography has been described recently [25], for detection of depth resolved nanoscale structural
changes non-invasively based on the principles of nano-sensitive OCT.

Studying nanoscale structural and dynamic changes in vivo is fundamental to understanding
changes occurring at cellular level before the changes manifest at the tissue level. Detecting
these submicron structural changes can help scientists and clinicians to diagnose the onset of
a disease, its progression and in determining treatment effectiveness of drugs. Herein, OCT
offers great potential whereby combining nano-detection techniques together with its real time,
3D structural imaging capability, can provide sub voxel structural data by mapping nanoscale
structural changes without improving the actual optical resolution. In contrast to phase sensitive
OCT, nsOCT images are less sensitive to noise and can be formed using just one frame. Both
techniques detect different information: nsOCT provides information about structural changes
whereas psOCT detects the displacements in time, and so can be complementary to each other.
nsOCT can partially overcome the scale range issue in optical imaging modalities, and also is
cost effective without the need to use expensive high resolution imaging optics.

The cornea is the transparent, avascular layer of the eye that controls the entry of light into the
eye and helps to refract the light onto the retina. Corneal transparency is vital to preserve its
structure and function. Corneal injuries generally arise from thermal and chemical burns [26,27].
Of these, 11.5-22% of all ocular injuries occur from chemical burns, from both acids and alkali
[28]. Among chemical induced corneal burns, alkali burn causes more damage to the corneal
stroma and anterior chamber compared to acid injury. Alkali ions being lipophilic, penetrate
into the corneal stroma disrupting the cells and denaturing the collagen matrix, which promotes
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further penetration into the anterior chamber [29,30]. The corneal stroma plays a vital role in
maintaining corneal transparency and acts as a load - bearing agent by protecting the ocular
tissues from changes in intra ocular pressure. Any change within the micro structures of the
cornea results in loss of transparency and increases the light scattering [31]. The corneal stroma
is made up of collagens, proteoglycans, glycoproteins and keratocytes and it has been shown
that, it is the nanoscale arrangement of collagen fibrils that ensures corneal transparency. It has
been reported that any change in the diameter of the collagen fibrils or creation of voids between
the fibrils causes increased light scattering within the cornea and leads to corneal opacity [31].
Another factor that increases light scattering within the cornea is the activation of keratocytes
within the stroma in response to the corneal wound healing process. Based on these studies,
it is imperative to understand the nanoscale structural changes occurring during ocular injury
and subsequent wound healing process in vivo for assessment of wound repair and monitoring
treatment efficacy.

Over the years, OCT has been routinely used in ophthalmic applications and some recent
studies have reported its use in evaluating the chemical ocular burn and its healing process
[32—-34]. All of these studies were based on the analysis of the structure of the anterior segment
of the injured eye from the OCT B-scans. As these chemical agents alter the structural integrity
of the cornea upon contact, nsOCT provides the possibility to detect and visualize the sub-micron
structure from just one frame and the submicron changes using two frames which otherwise
cannot be obtained from conventional OCT and other images.

In this paper, we investigate the applicability of nsOCT to detect these submicron structural
changes within the cornea following superficial alkali injury in a pre-clinical rat model. The
results obtained by nsOCT are validated with results from corneal histology sections.

2. Materials and methods
2.1. Experimental set up

In the present study, for pre-clinical imaging, a commercial VCSEL based swept source OCT
system operating at 200 kHz (OCS1310V2, Thorlabs) was used. The system was operating
at a central wavelength of 1300 nm (source bandwidth of 117 nm) with longest and shortest
wavelength of the source being 1358 nm and 1241 nm respectively. The system had an axial
resolution of 16 ym in air specified by the manufacturer. For the study, we used 5X objective
(LSMO03, Thorlabs) that provided a spatial resolution of 25um. The average output power
measured in the sample arm was 5 mW and had a signal to noise ratio (SNR) of 98 dB.

2.2. Rat cornea alkali burn model

Application of alkali to one cornea of the rat was performed under anaesthesia with isoflurane
followed by topical tetracaine. To induce alkaline injury, a piece of Whatman filter paper (3 mm
diameter) was soaked in NaOH (4 ul of a 1 M solution) and applied to the centre of the cornea of
the right eye for 60 seconds followed by rinsing with 10 ml of saline for fifteen minutes. Male
Lewis rats aged 8-14 weeks were obtained from Harlan Laboratories UK and were housed with
food and water for the study in a fully accredited animal housing facility. This study was approved
by Animals Care Research Ethics Committee of the National University of Ireland, Galway. All
the experimental procedures were performed in accordance with and authorization from the
Health Products Regulatory Authority of Ireland.

For histology analysis, animals were euthanized on the 7" day and the intact enucleated eyes
were fixed in 10% neutral buffered formalin and paraffin embedded using the Leica ASP300
tissue processor. Paraffin-embedded eyes were then sectioned (5 um; Leica Microtome) and
deparaffinised by sequential washing with xylene followed by washing in a descending series of
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ethanol and stained using haematoxylin and eosin (Sigma-Aldrich). The stained sections were
examined by Olympus light microscopy (20X magnification).

2.3. Experimental design

For the OCT imaging, the rats were mounted on an in-house developed mounting system such
that the eyes were stabilized and caused minimal movement artefact. OCT interferograms were
acquired prior to alkali injury and after the injury (time, 7= 0) of the study. To assess the wound
healing process, subsequent imaging was performed on day 7 following the alkali injury. Twelve
rats were included in this study, and raw OCT spectral interference signals were recorded before
(termed as the healthy group) and after inducing the alkali injury (termed as the immediate phase
group). Five rats from the immediate phase group were imaged on the 7th day following the
injury (termed as the acute reparative phase).

The mean optical power at the output of the sample arm was 5 mW, which is well below the
American National Standards Institute limit for maximum permissible exposure of 15.4 mW at
the wavelength of operation. For all the imaging, 3D volumetric data were acquired covering an
area of 5x5 mm?, with 200 B - scans covering the entire scan range.

2.4. nsOCT image formation

Nano-sensitive OCT accesses the three-dimensional spatial frequency components of a sample,
as a two-dimensional spatial frequency distribution in the Fourier plane [15-17]. It accomplishes
this by measuring the wavelength distribution for each voxel in a Fourier domain OCT system. In
a typical Fourier domain OCT system, the measured Fourier components (v,) of the backscattered
signal on the spectrometer at reasonably small numerical aperture (INA) of the objective lens is
given by Eq. (1), where A is the central wavelength of the source, n is the refractive index and the
corresponding spatial frequency period (H;) is given by Eq. (2).

_2n

v=2 (1)
H, =1 @)
Vz

Depending on the source bandwidth, there exists a range of spatial frequencies that can be
captured on the detector which is given by Eq. (3), where A4, and A; are the longest and shortest
wavelength of the source and AA is the bandwidth of the source.

_2nAd

Ay =
A1,

3)

The scattered waves for a given wavelength will be in phase only if the spacing between the
reflected planes is equal to one half of the wavelength. This implies that, for a given spacing or a
given spatial period, a strong signal is detected only at one wavelength. In OCT, since the directions
of illumination and measurement of backscattering are the same, the spatial frequency/period
can be obtained by Eq. (1) and Eq. (2) respectively. From Eq. (1) and (2), we can observe that a
change in spatial periodicity of the structure by AH,, results in a wavelength shift A\ =2nAH,.
Such a shift can be easily detected by an OCT system (spectral resolution of our OCT system
is 0.093 nm). However, while taking the inverse Fourier transform of the interference signal
to reconstruct the OCT structural image, the spatial frequency information which corresponds
to small, submicron structure, is lost. This reduces the sensitivity of conventional OCT signal
processing to detect submicron changes in the scattering structures. In nsOCT, by scaling each of
the spatial frequencies, or spatial frequency periods, to the corresponding wavelength, the spatial
frequency of the scattering structures is preserved when transforming from k-space to the image
space, thereby enhancing the sensitivity of OCT imaging.
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Fig. 1. Flow chart describing nsOCT image formation.
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In order to realize nsOCT, first the k-space linearized spectral interferogram I(2) is converted
to corresponding axial spatial frequency I (v;) using Eq. (1). In the present study, AA is 117 nm
corresponding to A and A of 1241 nm and 1358 nm respectively. The spatial frequencies varied
from 2.025 MHz to 2.21 MHz according to Eq. (1) (n=1.376 for cornea) and corresponding
physical spatial periods varied from 451 nm to 493 nm according to Eq. (2). If we consider the
refractive index, n to be equal to 1, the optical spatial periods calculated according to Eq. (1) will
vary from 621 nm to 679 nm. In this paper, we have used physical spatial periods for our analysis.

The spectrum of axial spatial frequency is then decomposed into N zones using a Tukey
window. For each of the N zones, the axial spatial frequency profile is inverse Fourier transformed
to reconstruct the OCT image for each zone. From the reconstructed OCT images of N zones,
the dominant spatial frequency/period at each point is determined by finding the maximum
intensity values at each point across the N zones. Next, the dominant spatial frequency/ period
value is mapped to form the nsOCT image. This process is repeated for every A-line in a B-scan
and for every B-scan in a 3D volume. In the present study, the spectral interference signal was
decomposed into 10 zones with each zone having spatial frequency bandwidth (6vy) of %.
There is a trade-off between spatial resolution and structural resolution depending on the width
of the window used. We can apply different width of the window depending on the sample
and purpose of imaging, and so improve structural or spatial resolution. To reconstruct nsOCT
spatial period profiles, the windowed spectrum was inverse Fourier transformed using p-point
IFFT where p is the length of the interference signal. Briefly, the technique is described in the
flowchart shown in Fig. 1. Further, to supress the noise within the nsOCT images, a 4 X 4 spatial
kernel and a threshold of mean + 0.7 *standard deviation was used. The spatial filtering kernel
and the threshold can be optimized based on the application or requirement.

3. Results and discussion

To demonstrate the ability of nsOCT to detect depth resolved structural changes at nanoscale,
we imaged two samples with periodic axial structure, Bragg gratings obtained from OptiGrate
Corp. USA. Images of these samples with different and well known axial periodic structures
(431.6nm and 441.7 nm and a refractive index of 1.48 +0.001) are shown in Fig. 2. Figure 2(a)
shows the conventional OCT B scan image obtained from the Bragg gratings and Fig. 2(b) shows
the corresponding nsOCT spatial period maps.
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Fig. 2. Experimental demonstration of nsOCT technique using Bragg grating having axial
spatial period of 431.6 nm and 441.7 nm (a) OCT B scan (b) nsOCT map.

From the above nsOCT processed images of the Bragg gratings, it can be observed that our
technique clearly detects the sub-micron axial spatial periods of the samples under investigation
and is not detecting signals arising from any optical aberrations. The Bragg gratings has an
antireflection coating on top and gives an appearance of noise signal as can be seen in Fig. 2(b).
Also, Fig. 2(b) clearly demonstrates that chromatic aberrations of the imaging system versus
depth are negligible and we can clearly visualise structures with different sizes at a depth of
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about 1 mm, and perhaps deeper. From Fig. 2(b), the depth resolved difference in structural size
of 10nm can be detected. Figure 2 confirms that using nsOCT technique, we can detect the
sub-micron structure and nanoscale differences between such structures without resolving them
spatially.

Next, for the assessment of corneal wound healing process in a pre-clinical rat burn model,
nsOCT algorithm was implemented to determine the nanoscale structural changes occurring
within the cornea over time. Figure 3 shows the conventional OCT B-scans and nsOCT B-scans
of healthy rat cornea, cornea after alkali injury and the same cornea after 7 days.
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Fig. 3. Conventional OCT B-scans (a) uninjured cornea (b) after alkali induced corneal
burn (c) injured cornea on 7th day (d) nsOCT B-scan of corresponding uninjured cornea (e)
nsOCT B-scan following alkali induced corneal burn (f) nsOCT B-scan on 7th day following
the injury. Scale bars — 500 um.

Alkali burn results in corneal oedema and increased light scattering within the cornea as can
be observed from OCT intensity B—scan images in Fig. 3(b) and 3(c), but there is no information
about structural changes within the cornea. Also, from the conventional OCT intensity images,
we can observe the thickening of the cornea following the alkali injury. Upon alkali burn, the
average thickness of the central cornea increased from 150 + 3.6 um (mean + standard error) for
the healthy group to 270 + 10 um (mean + standard error) for the immediate phase group and to
315 + 39 um (mean + standard error) during the acute reparative phase. While reconstructing
OCT intensity B-scans following the conventional approach, we lose the sensitivity of OCT to
spatial period information. From Figs. 3(d) — (e) we can observe that nsOCT processed B-scans
differ significantly in the spatial period of the structures within the cornea between a healthy
cornea, at the onset of alkali injury and during the acute reparative phase of the injured cornea.
The corneal inflammation and denaturization of the collagen matrix in response to alkali injury
results in an increase in spatial period of the structures within the cornea as observed in nsOCT
images in Fig. 3(e) and 3(f) compared to Fig. 3(d).

As stated before, alkali injury penetrates the corneal stroma and leads to the damage of anterior
chamber. Hence, for better visualization of the nanoscale structural changes within the cornea
at each depth, enface images were reconstructed from the processed nsOCT and conventional
B-scans excluding the iris [35]. Figure 4 shows representative enface OCT images at a depth of
60 pm before and after the alkali injury. From the figure, it can be observed that conventional
OCT enface intensity images fail to distinguish between healthy cornea and injured cornea. In
conventional structural OCT images, including images in Figs. 4(a-c), the intensity value at each
point provides information only about reflectivity at a given location and does not convey any
information about the structure below the resolution limit at that location. To quantitatively
assess if changes in OCT intensity alone could detect changes within the cornea, the intensity
values across the corneal depth for all the three groups are plotted in Fig. 5. From Fig. 5, we
can observe that intensity alone does not provide any information regarding the depth dependant
structural changes occurring within the cornea following the alkali burn and subsequent healing.
Hence, it is not possible to detect if the structure within one area is different from the structure
within another area solely basedon intensity/gray level values.



708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

Research Article Vol. 11, No. 5/1 May 2020/ Biomedical Optics Express 8 |

Biomedical Optics ExXPRESS AR

490
485

480
Spatial

475 period
(nm)

© 1465

460

Fig. 4. Enface intensity and nsOCT images at a depth of 60 um. (a), (d) healthy cornea; (b),
(e) after alkali induced burn; (c), () injured cornea on 7th day. Scale bars — 500 pm.
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Fig. 5. Plot showing OCT intensity values across the corneal depth between the healthy
group, immediate phase group and acute reparative phase group (mean =+ std. deviation).

In contrast, nsOCT images are formed using a different contrast mechanism, i.e., they visualize
the dominant size of the sub-micron structure at a given location. Thus, from nsOCT images, the
structural changes can be detected as shown in Figs. 4(d)—4(f). nsOCT processed enface images
clearly indicate changes in spatial period within the cornea and helps to distinguish between
healthy and injured cornea as shown in Figs. 4(d) and 4(e). Also, nsOCT processing is able
to track structural changes happening within the cornea at the onset of an injury and also in
assessing the healing process based on the changes in the spatial period as can be observed in
Figs. 4(e) and 4(f).

To compare the structural integrity of the cornea between the healthy, immediate phase and
acute reparative phase of the injury, dominant spatial period across the corneal depth for all the
three groups is plotted in Fig. 6. Statistical analysis using paired t-test (5 samples per group)
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shows significant difference (p < 107') in spatial period changes over the corneal depth between
the healthy group, immediate phase group and acute reparative phase groups.
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Fig. 6. Plot showing dominant spatial period across the corneal depth between the healthy
group, immediate phase group and acute reparative phase group (mean = std. deviation).

Figure 6 indicates that at the onset of an alkali injury, the spatial period of the structures within
the cornea increases at all depths. This is in accordance with the fact that alkali injury penetrates
deep into the cornea. The exact reason for this increase in spatial period is not known, however
it must be linked to the changes occurring within the collagen matrix of the stroma and due to
swelling within the cornea upon the activation of keratocytes within the stroma.

From Fig. 6, it can be observed that during the acute reparative phase of alkali induced corneal
injury, the spatial period of the structures at all depths within the cornea tends to reduce compared
to the cornea in the immediate phase group. Also, it is to be noticed that, the most prominent
reduction in spatial period occurs within the corneal stroma at depths 50-150 um. These results
also indicate that there are significant changes happening within the collagen matrix of the stroma
during the acute reparative phase. From Fig. 6, it can be observed that during the acute reparative
phase of the injury, the structural spatial period of the injured cornea across all depths is higher
than that of healthy group, however, follows a consistent pattern similar to that of the healthy
group. From Figs. 4 and 6, it is evident that nsOCT is able to capture the nanoscale structural
changes within the cornea during the wound healing process in vivo thus enabling nsOCT to be
a powerful processing method sensitive to nanoscale structural changes within the sample of
interest. Also, from Fig. 6, one can observe the spatially dependent structural periodicity within
the cornea at increasing depths in addition to the temporal change. These structural periodicity
in different layers of the cornea may be better studied by nsOCT approach using an ultra-high
resolution OCT system centred around 800 nm. In the present study, nsOCT algorithm was
implemented in Matlab (Mathworks, version 2014) and takes 30s to process a single nsOCT B-
scan using a desktop PC (DELL Precision T7500, Intel Xenon E5645 2.40 GHz, 12 GB RAM).

In order to calculate the physical spatial periods, we have used an average refractive index value
of 1.376 within the cornea. Though the individual corneal layers have different refractive indexes
that varies from 1.400 at the epithelium to 1.373 at the endothelium [36,37], the relative changes
in refractive index between these layers is less than 0.03, for which the spatial period calculated
changes by 10 nm. Previous literature suggests that following alkaline injury, corneal hydration
increases [38-40], thereby decreasing the corneal refractive index [39,41]. As alkali injury causes
areduction in average corneal refractive index, the spatial period calculated by nsOCT will be
further increased. For simplicity of calculations, the average value of refractive index of a healthy
cornea is used in our analysis. Since the purpose of this study was to detect the structural changes
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within cornea following injury and healing, and not the accurate estimate of the physical spatial
period of the structures within each layer of the cornea, mapping the spatial period values by
substituting the corresponding refractive index values at each depth within the cornea do not
affect the obtained results. This is a proof of concept study to demonstrate the potential of nsOCT
to detect structural changes within the cornea following alkali injury and healing, and we have
not considered the effect of refractive index changes with wavelength. In the appendix provided
along with this manuscript, we have also provided optical spatial period changes (considering
refractive index, n = 1) within the cornea following alkali injury and subsequent healing (Figs. 9
and 10). The optical spatial period changes are independent of changes in refractive index within
biological tissue.

Currently, stained histology imaging is the gold standard to assess micro/nanoscale structural
changes within a biological tissue. Thus, besides the nanoscale results obtained using nsOCT, it
would be also interesting to analyse the structural changes at microscale using histology sections
of the cornea before and after the injury.

Figure 7(a) and (b) show representative histology sections of a healthy cornea and an injured
cornea on day 7 post injury respectively. As seen from Fig. 7(a), the healthy cornea is characterized
by intact epithelium, and well-arranged collagen fibres within the stroma. However, histological
examination of the cornea on day 7 post injury reveals vacuolization of the surface layer of the
epithelium along with degenerative changes in the stroma.

(a) (b)

Fig. 7. Corneal histological sectioning (a) healthy cornea (b) injured cornea on day 7; Scale
bars — 50 ym.

Furthermore, we hypothesize that to validate nsOCT results with the histological sectioning,
spatial frequency changes of the structures within the corneal histology images can be analysed.
Recent studies have used multimodal imaging techniques to correlate structural changes within
cornea to histological sectioning [42,43]. In order to analyse the spatial frequency profiles from
the histology images, we analysed thirty profile lines across the histology cross-section (from
the epithelium to the stroma) in a given region and Fourier transforms of these profiles were
calculated to obtain the spectrum of spatial period distribution of the structures. From the Fourier
spectrum of the profiles, median spatial frequency/period (msf) of the spectrum was calculated
according to Eq. (4). The msf was calculated for thirty profiles in a given region and averaged
to give the averaged msf to indicate changes within the periodicity of the structures within the
cornea pre and post corneal injury.
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where x(n) represents the magnitude of the spectrum at the frequency f{(n).

Figures 8(a) and (b) show representative spectra of the line profiles along with the median
spatial period values for healthy cornea and injured cornea respectively. It can be observed that
the median spatial period tends to move towards the right end of the spectrum for the injured
cornea indicating an increase in the spatial period of the structures within cornea post injury. This
observation supports our results obtained using the nsOCT technique. For statistical comparison
between the median spatial period values of the pre and post injury corneal histology sections,
ten sections from each group were analysed. Unpaired t-test results (sample — 10 histology
sections per group) show statistical significance between the two groups with p < 0.05. Box plot
showing the distribution of mean spatial periods of healthy cornea and cornea on day 7 post
injury calculated from the histology line profile is shown in Fig. 8(c). From Fig. 8(c), it can
be observed that post injury, the spatial period of the submicron structures within the cornea
has increased compared to that of a healthy cornea. For the healthy cornea, the mean spatial
period distribution is 29.3 + 6.8 (standard deviation) um and for the injured cornea on day 7, it is
34.6 + 5 (standard deviation) um. So, the results of the Fourier analysis of the histology images
supports results obtained using nsOCT approach. The obtained results are interesting to further
explore correlations between structural changes occurring at different scales of imaging.
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Fig. 8. Spatial period profiles obtained by Fourier transform of histology line profiles (a)

healthy cornea (b) injured cornea (c) box plot showing the spatial period distribution of
healthy and injured cornea.

4. Conclusions

In the present study, along with previous research [15-17, 22], we have elucidated the capability
of the nsOCT technique to detect structural changes within the cornea to assess the impact of
alkali injury and also to study the wound healing process. nsOCT offers much higher sensitivity
to structural changes within the cornea compared to conventional OCT processing. The study
reveals that nsOCT is able to detect structural changes with nanoscale sensitivity between healthy
cornea, injured cornea and also during the reparative phase of the injury at all depths within the
cornea with high statistical significance (p < 107'%). Further studies are required to accurately
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determine the physical spatial period changes taking place within cornea following the injury by
considering the refractive index values at each of the layers within cornea.

The method presented offers potential for in vivo imaging applications especially in clinical
imaging where sensitivity to changes in structure is of significance either to detect the onset of
a disease or to evaluate the efficacy of treatment which cannot be obtained from conventional
OCT processing. In contrast to phase sensitive OCT, nsOCT images are formed from just a
single frame. Further studies are required to assess the suitability of the method described to
measure the corneal transparency based on the sensitivity of nsOCT to the structural integrity
of collagen network within the stroma. The technique described bridges the gap between high
resolution imaging and increased depth of imaging in OCT by enhancing the sensitivity of OCT
to nanoscale structural changes within the sample. Further applications of the technique can be
used to study morphological changes in biomedical samples, for example, to image progression
of cancerous cells and tumours as they are known to undergo nanoscale structural changes within
their vicinity long before the manifestation of the disease.

Appendix

Figure 9 shows the comparison of optical spatial period changes across the corneal depth for the
healthy group and the immediate phase group. Statistical analysis using paired t-test (samples
12 per group) shows significant difference (p < 10~7) in optical spatial period changes over the
corneal depth between the healthy uninjured cornea and the immediate phase group.

Figure 10 shows the comparison of optical spatial period changes across the corneal depth
for all the three groups. Figure 11 shows the plot of physical spatial period changes across the
corneal depth for all the three groups together with the individual data points (all the animals).
Table 1 shows the calculations used to find the depth at which most prominent reduction in spatial
period occurs during the acute reparative phase. The data used for this table comes from the plot
in Fig. 6 of the manuscript.
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Fig. 9. Averaged dominant spatial period across the corneal depth for the healthy group and
the immediate phase group.
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Table 1. Tabulated values of percentage reduction on physical spatial changes across the corneal
depth between immediate phase and acute reparative phase.

Depth (um) Percentage reduction = ((Immediate phase - Reparative phase)/Immediate phase) x 100
0 0.12
8 0.12
16 0.18
24 0.22
32 0.34
40 0.36
48 0.39
56 0.40
64 0.42
72 0.40
80 0.40
88 0.41
96 0.40
104 0.40
112 0.40
1201 0.41
128 0.41
136 0.41
144 0.41
152 0.38
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